473 research outputs found

    Contribution of studies of sub-seismic fracture populations to paleo-hydrological reconstructions (Bighorn Basin, USA)

    Get PDF
    This work reports on the reconstruction of the paleo-hydrological history of the Bighorn Basin (Wyoming, USA) and illustrates the advantages and drawbacks of using sub-seismic diffuse fracture populations (i.e., micrometric to metric joints and veins forming heterogeneous networks), rather than fault zones, to characterize paleo-fluid systems at both fold and basin scales. Because sub-seismic fractures reliably record the successive steps of deformation of folded rocks, the analysis of the geochemical signatures of fluids that precipitated in these fractures reveals the paleo-fluid history not only during, but also before and after, folding. The present study also points out the need for considering pre-existing fluid systems and basin-scale fluid migrations to reliably constrain the evolution of fluid systems in individual folds

    Structural and kinematic relationships between Corsica and the Pyrenees-Provence domain at the time of the Pyrenean orogeny

    No full text
    International audienceThe Pyrenees-Provence belt and the Alps were both active in the late Eocene. Alpine Corsica was once a part of the Alps, and the now obducted metamorphic oceanic domain is similar and easily correlated in both areas. Tectonic reconstructions before the Oligo-Miocene opening of the Liguro- Provenc¸al basin show that at the same time, Corsica was located in the hinterland of the Provenc¸al ranges. A late Eocene cross section running from Alpine Corsica to Provence gives an image of a complete mountain belt from an internal domain made of metamorphosed oceanic material (Alpine Corsica) to the foreland fold and thrust with a thin-skinned geometry (Provence). During the late Eocene the intervening basement of western Corsica was thus within this mountain belt, probably thrust onto the European basement. We analyze and interpret the structural pattern and the overall geometry of the Provenc¸al-Corsican domain during late Eocene times in terms of oblique convergence and strain partitioning, within the framework of the Africa- Eurasia convergence. This evolution is integrated in a set of kinematic reconstructions of the western Mediterranean region from 65 Ma to the presen

    Introduction: geodynamic evolution of the Zagros

    Get PDF
    This special issue of Geological Magazine presents a collection of 17 papers dealing with different aspects of the Zagros orogen. Many, though not all, of these contributions were presented as part of a highly successful session devoted to the geodynamic evolution of the Zagros belt at the European Geosciences Union General Assembly 2010 in Vienna (Austria). The aim of this gathering was to assemble a broad group of Earth scientists interested in the Zagros orogen to discuss and disseminate new results and ideas efficiently. This volume presents a collection of some of the diverse research that is currently being carried out in the Zagros. We believe that these studies contribute to the understanding of the geodynamic evolution of the Zagros Mountains in particular, but in addition to orogenic processes in genera

    Fingerprinting stress: stylolite and calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding-the case of the Monte Nero anticline in the Apennines, Italy

    Get PDF
    In this study we show for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a fold-and-thrust belt. First, we present a new method that gives access to stress inversion using tectonic stylolites without access to the stylolite surface and compare results with calcite twin inversion. Second, we use our new approach to present a high-resolution deformation and stress history that affected Meso-Cenozoic limestone strata in the Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). In this area an extensive stylolite-joint/vein network developed during layer-parallel shortening (LPS), as well as during and after folding. Stress fingerprinting illustrates how stress in the sedimentary strata did build up prior to folding during LPS. The stress regime oscillated between strike slip and compressional during LPS before ultimately becoming strike slip again during late stage fold tightening. Our case study shows that high-resolution stress fingerprinting is possible and that this novel method can be used to unravel temporal relationships that relate to local variations of regional orogenic stresses. Beyond regional implications, this study validates our approach as a new powerful toolbox to high-resolution stress fingerprinting in basins and orogens combining joint and vein analysis with sedimentary and tectonic stylolite and calcite twin inversion techniques

    Fracture controlled paleohydrogeology in a basement-cored, fault-related fold: Sheep Mountain Anticline, Wyoming, United States

    Get PDF
    International audienceNew geochemical and microstructural data constrain the origins and pathways of paleofluids during the growth of Sheep Mountain Anticline, Wyoming, United States. Oxygen, carbon, and strontium isotope studies were performed on prefolding and fold-related calcite veins and their sedimentary host rocks and combined to fluid inclusion microthermometry results. We show that most of the cements precipitated from Paleogene meteoric fluid. Stable isotopes and fluid inclusion homogenization temperatures further indicate that most veins were mineralized from upward moving fluids after these fluids were heated at depth (T > 110°C). This implies that fluids migrated along the basement thrust underlying the fold and/or at the base of the cover. Above the fault tip, the fluids circulated rapidly in the diffuse synfolding (and early folding) fracture network. The zone of preferential migration of the warm fluids is currently located in the backlimb of the fold, which supports some of the previously published structural interpretation of the subsurface. This study also highlights the potential of combined fracture analysis and geochemical analyses of paleofluid flows in fractures to constrain both the deformation history and the fluid flow during basement-involved shortening in Laramide-style forelands

    Paleostress magnitudes in folded sedimentary rocks

    Get PDF
    International audienceUsing Sheep Mountain Anticline (Wyoming, USA) as a case study, we propose a new approach to quantify effective paleo-principal stress magnitudes in the uppermost crust. The proposed mechanical scenario relies on a well-documented kinematic and chronological sequence of development of faults, fractures and microstructures in the folded strata. Paleostress orientations and regimes as well as differential stress magnitudes based on calcite twinning paleopiezometry are combined with rock mechanics data in a Mohr construction to derive principal stress magnitudes related to the successive steps of layer-parallel shortening and to late stage fold tightening. Such quantification also provides original insights into the evolution of the fluid (over)pressure and amount of syn-folding erosion

    Frontal belt curvature and oblique ramp development at an obliquely collided irregular margin : geometry and kinematics of the NW Taiwan fold-thrust belt

    Get PDF
    Combined structural and tectonic analyses demonstrate that the NW Foothills of the Taiwan collision belt constitute mainly an asymmetric “primary arc” type fold-thrust belt. The arcuate belt developed as a basin-controlled salient in the portion of the foreland basin that was initially thicker, due to the presence of a precollisional depocenter (the Taihsi basin). Additional but limited buttress effects at end points related to interaction with foreland basement highs (Kuanyin and Peikang highs) may have also slightly enhanced curvature. The complex structural pattern results from the interaction between low-angle thrusting related to shallow decollement tectonics and oblique inversion of extensional structures of the margin on the southern edge of the Kuanyin basement high. The tectonic regimes and mechanisms revealed by the pattern of paleostress indicators such as striated outcrop-scale faults are combined with the orientation and geometry of offshore and onshore regional faults in order to accurately define the Quaternary kinematics of the propagating units. The kinematics of this curved range is mainly controlled by distributed transpressional wrenching along the southern edge of the Kuanyin high, leading to the development of a regional-scale oblique ramp, the Kuanyin transfer fault zone, which is conjugate of the NW trending Pakua transfer fault zone north of the Peikang basement high. The divergence between the N120° regional transport direction and the maximum compressive trend that evolved from N120° to N150° (and even to N–S) in the northern part of the arc effectively supports distributed wrench deformation along its northern limb during the Pleistocene. The geometry and kinematics of the western Taiwan Foothills therefore appear to be highly influenced by both the preorogenic structural pattern of the irregularly shaped Chinese passive margin and the obliquity of its Plio-Quaternary collision with the Philippine Sea plate

    Frontal belt curvature and oblique ramp development at an obliquely collided irregular margin : geometry and kinematics of the NW Taiwan fold-thrust belt

    No full text
    Combined structural and tectonic analyses demonstrate that the NW Foothills of the Taiwan collision belt constitute mainly an asymmetric “primary arc” type fold-thrust belt. The arcuate belt developed as a basin-controlled salient in the portion of the foreland basin that was initially thicker, due to the presence of a precollisional depocenter (the Taihsi basin). Additional but limited buttress effects at end points related to interaction with foreland basement highs (Kuanyin and Peikang highs) may have also slightly enhanced curvature. The complex structural pattern results from the interaction between low-angle thrusting related to shallow decollement tectonics and oblique inversion of extensional structures of the margin on the southern edge of the Kuanyin basement high. The tectonic regimes and mechanisms revealed by the pattern of paleostress indicators such as striated outcrop-scale faults are combined with the orientation and geometry of offshore and onshore regional faults in order to accurately define the Quaternary kinematics of the propagating units. The kinematics of this curved range is mainly controlled by distributed transpressional wrenching along the southern edge of the Kuanyin high, leading to the development of a regional-scale oblique ramp, the Kuanyin transfer fault zone, which is conjugate of the NW trending Pakua transfer fault zone north of the Peikang basement high. The divergence between the N120° regional transport direction and the maximum compressive trend that evolved from N120° to N150° (and even to N–S) in the northern part of the arc effectively supports distributed wrench deformation along its northern limb during the Pleistocene. The geometry and kinematics of the western Taiwan Foothills therefore appear to be highly influenced by both the preorogenic structural pattern of the irregularly shaped Chinese passive margin and the obliquity of its Plio-Quaternary collision with the Philippine Sea plate

    Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline: Sheep Mountain Anticline, Wyoming

    Get PDF
    International audienceIn order to characterize and compare the stress-strain record prior to, during, and just after folding at the macroscopic and the microscopic scales and to provide insights into stress levels sustained by folded rocks, we investigate the relationship between the stress-strain distribution in folded strata derived from fractures, striated microfaults, and calcite twins and the development of the Laramide, basement-cored Sheep Mountain Anticline, Wyoming. Tectonic data were mainly collected in Lower Carboniferous to Permian carbonates and sandstones. In both rock matrix and veins, calcite twins recorded three different tectonic stages: the first stage is a pre-Laramide (Sevier) layer-parallel shortening (LPS) parallel to fold axis, the second one is a Laramide LPS perpendicular to the fold axis, and the third stage corresponds to Laramide late fold tightening with compression also perpendicular to the fold axis. Stress and strain orientations and regimes at the microscale agree with the polyphase stress evolution revealed by populations of fractures and striated microfaults, testifying for the homogeneity of stress record at different scales through time. Calcite twin analysis additionally reveals significant variations of differential stress magnitudes between fold limbs. Our results especially point to an increase of differential stress magnitudes related to Laramide LPS from the backlimb to the forelimb of the fold possibly in relation with motion of an underlying basement thrust fault that likely induced stress concentrations at its upper tip. This result is confirmed by a simple numerical model. Beyond regional implications, this study highlights the potential of calcite twin analyses to yield a representative quantitative picture of stress and strain patterns related to folding
    • …
    corecore